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Calculation of properties of molecules and crystals as obtained from a multipole

electron-density model restored from the accurate X-ray diffraction data is

considered. Electronic and exchange energy-density distributions are presented

along with those of local temperature and local entropy. Integration of the local

functions over atomic basins de®ned by the zero-¯ux condition allows properties

of molecules and crystals to be expressed in terms of atomic contributions

derived directly from X-ray diffraction experiments. Distributions of local Fermi

momentum and one-electron potential are considered as well. The approach has

been applied to diamond, sodium ¯uoride, sodium chloride, solid chlorine,

�-oxalic acid dihydrate and YBa2Cu3O6.98.

1. Introduction

A description of bonding in molecules and solids in terms of

the electron density (ED) and electron-density-based func-

tions is a quickly developing ®eld, which is known to attract

physicists, chemists, biologists, geochemists and materials

scientists. Analysis of total, valence and deformation electron

densities and electrostatic potential, the gradient and Lapla-

cian ®elds has developed into an effective tool for quantitative

evaluation of physical and chemical properties of molecules

and solids1 (Bader, 1990; Tsirelson & Ozerov, 1996). The main

language of such works is that of the topological theory of

atomic and molecular interactions developed by Bader (1990)

and others. On the other hand, ED, which determines all

properties of atoms, molecules and crystals in the ground

electronic state (Hohenberg & Kohn, 1964), is a main variable

in the density functional theory (DFT). This well established

theory (Springborg, 1977; Lundqvist & March, 1983; Dahl &

Avery, 1984; Parr & Yang, 1989; Dreizler & Gross, 1990;

Reznik, 1992; Ellis, 1995; Nagy, 1998; Kohn, 1999) provides a

basis for a quantitative determination of electronic properties

in terms of local kinetic, potential and total electronic ener-

gies, density of exchange energy and exchange potential. Since

ED has become readily obtainable from the accurate X-ray,


-ray and synchrotron-radiation diffraction experimental data

via the multipole expansion model (Tsirelson & Ozerov,

1996), a combination of the DFT formalism and model elec-

tron density may be used to analyze the nature of atomic and

molecular interactions in solids. The model quasistatic ED is

as precise as ~0.05 e AÊ ÿ3 in the main part of a crystal space;

the regions around the nuclei with radius of about 0.2 AÊ ,

where experimental error increases with the atomic number,

are excluded. The model ED is close to that derived from

quantum mechanics (Tsirelson, 2002a,b,c); therefore, it

appears to be suitable for the analysis of bonding mechanisms.

In practice, the exact functionals connecting physical func-

tions and quantities with the electron density are often

unknown. This is true e.g. for kinetic energy as well as for

exchange and correlation energy functionals. As a result, DFT

methods use approximate functionals with explicit depen-

dence on ED (Parr & Yang, 1989; Dreizler & Gross, 1990;

Reznik, 1992). Unlike the orbital scheme of Kohn & Sham

(1965), such an approach makes the variational determination

of wavefunctions completely unnecessary, in accordance with

the Hohenberg & Kohn (1964) formulation of the DFT. For

example, the kinetic energy density can be approximated

according to Kirzhnits (1957) via electron density and its

derivatives (Tsirelson, 1992). Espinosa et al. (1998, 1999) and

Espinosa & Molins (2000) have extended this approach to the

potential energy density using a local virial theorem (Bader,

1990). Later, Espinosa et al. (2001), Galvez et al. (2001) and

Tsirelson (2002a,b,c, 2003) strengthened this approach by

demonstrating that the approximate quasistatic model ED

yields the kinetic, potential and total electronic energy

distributions in close agreement with those obtained from ®rst

principles. Tsirelson (2002a) has also discussed the speci®city

of using the model electron density derived from an X-ray

diffraction experiment in the DFT formalism and pointed out

the limitations of this approach. Tsirelson & Stash (2002a,b)

approached a quantum-chemical description even more

closely by extending it to the approximate determination of

the electron localization function and localized-orbital locator.

1 Electric dipole and quadrupole molecular moments (Spackman, 1992), the
electrostatic part of the intermolecular energy (Suponitsky et al., 1999) and the
electric ®eld gradient at the position of a nucleus (Tsirelson & Ozerov, 1996)
are also known to provide information on bonding.



The Dirac±Slater exchange potential calculated using experi-

mental ED was presented as well (Stash & Tsirelson, 2002).

Experimental ED-based determination of local energy and

related properties has been widely used to analyze bonding in

molecules and solids, mainly by evaluation of the topological

parameters at the bond critical points (Cramer & Kraka, 1984;

Bader, 1990; Bone & Bader, 1996; Abramov, 1997; Hill et al.,

1997; Martin Pendas et al., 1977, 1998; Luana et al., 1997;

Espinosa et al., 1998, 1999; Tsirelson et al., 1998; Spackman,

1999; Bianchi et al., 2000; Gibbs et al., 2000; Popelier et al.,

2000; Zhurova & Tsirelson, 2002; Ta®polsky et al., 2002;

Scherer et al., 2003). At the same time, Popelier (2000) and

Tsirelson (2003) found that the critical-point-based descrip-

tion of bonding is rather incomplete, whereas analysis of the

ED and energy distribution over the entire molecular or

crystal space provides a more detailed picture of the bonding.

In this work, we further explore possible use of the

experimentally derived electron density and its derivatives in

the approximate functionals of the density functional theory.

We present distributions of the total electronic energy density

and exchange energy density and consider the atomic contri-

butions of these functions in average energy properties of

many-electron systems. We also extend the latter approach to

the `internal' thermodynamic properties of the electron gas

such as local temperature and local entropy. And ®nally, we

show that a local Fermi momentum and a one-electron

potential (Hunter, 1975, 1986, 1996) derived from the

experimental electron density can serve as a descriptor of

electron localization. Physical and chemical content of these

functions will be illustrated by a number of examples of

compounds with different types of chemical bonds.

We should mention that all the functions considered in this

work, in principle, might also be calculated using the one-

electron density matrix reconstructed from the electron

density with different methods (Tsirelson et al., 1977; Tsirelson

& Ozerov, 1979; Clinton et al., 1983; Gritsenko & Zhidomirov,

1987; Levy & Goldstein, 1987; Aleksandrov et al., 1989;

Schwarz & Mueller, 1990; Schmider et al., 1992; Zhao & Parr,

1993; Jayatilaka, 1998; Jayatilaka & Grimwood, 2004). Tsir-

elson & Ozerov (1996) have discussed the advantages and

pitfalls of the last approach in detail.

2. An overview

The local electronic energy characterizing the bonding in

many-electron systems (Bader & Beddall, 1972),

he�r� � g�r� � v�r�; �1�

is a sum of the density of the quasiclassical electronic kinetic

energy

g�r� � �1=2�rrrr0
�r; r0�jr�r0 �2�

[g(r) � 0] and the negative-everywhere density of the elec-

tronic potential energy

v�r� � ÿP
a

�Za=�rÿ Ra����r� �
R �ÿ�r; r1�=�rÿ r1�� dr1 � Ven

�3�
(atomic units are used throughout the paper). Here, 
(r, r0)
and ÿ(r, r1) are one- and two-electron density matrices, Za is

the charge of a nucleus a placed at Ra and Ven stands for the

electron±nuclear attraction term. The sign of he(r) shows that

either kinetic or potential energy dominates at a given point r.

DFT considers electron density in molecules and solids to

be an inhomogeneous gas of non-interacting electrons.

Realization of the Hohenberg±Kohn approach implies that

the local homogeneity principle (Kirzhnits et al., 1975) is

imposed, i.e. the property density at each point r is supposed

to be the same as that of a homogeneous electron gas with ED

equal to �(r) everywhere. The latter approximation, which is

widely used in the DFT, makes the results obtained for a

homogeneous electron gas applicable in the case of inhomo-

geneous systems. Accordingly, the Thomas±Fermi model of an

electron gas (Parr & Yang, 1989) is often used in the

description of the electronic structure of molecules and crys-

tals as an initial approximation.

The one-electron density matrix 
(r, r0) in (2) is related to

the one-particle Green function via the Laplace transforma-

tion (Parr & Yang, 1989; Dreizler & Gross, 1990). Using the

gradient h- expansion of the Green function around the clas-

sical Thomas±Fermi term (Kirzhnits, 1957), the kinetic energy

density may be expressed via electron density and its deriva-

tives:

gDFT�r� � �3=10��3�2�2=3��r�5=3 � �1=72��r��r��2=��r�
� �1=6�r2��r�: �4�

The ®rst term in (4) is the Thomas±Fermi kinetic energy

density. Though the latter expansion is not unique owing to

the Laplacian term (Cohen, 1979, 1984; Cohen & Zapar-

ovanny, 1980), it satis®es a necessary non-negativity condition

for the phase-space function representing the quasiprobability

distribution of electrons over coordinates and momenta

(Ayers et al., 2002). The long-range behavior of the approxi-

mate gDFT(r) is correct provided that the gradient expansion is

truncated at the second-order term (Tal & Bader, 1978). At

the same time, the approximate function gDFT(r) [equation

(4)] attains unphysical negative values with r! Ri because of

the Laplacian term, whereas the `correct' kinetic energy

density g(r) [equation (2)] is ®nite and positive at the nuclei

(Bader & Beddall, 1972). Fortunately, the radius of negative

holes in g(r) surrounding the nuclei does not exceed 0.15 AÊ ,

attaining the maximum for an H atom, which is within the

range of error resulting from the experimental uncertainty of

ED in the vicinity of the nuclei.

The local form of the virial theorem (Bader & Beddall,

1972)

2g�r� � v�r� � �1=4�r2��r� �5�
relates g(r) and v(r) with the Laplacian of ED. Thus, having

estimated g(r) from expression (4), we can determine the

potential energy density v(r) using (5) and then calculate the
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density of the total electronic energy (1), provided that �(r),

r�(r) and r2�(r) are known. The experimental electron

density may be used to carry out these calculations (Tsirelson,

1992, 2002a; Espinosa et al., 2001; Espinosa & Molins, 2000).

Approximation (4) allows us to extend the list of functions,

derivable from the experimental ED. According to Ghosh et

al. (1984), the position distribution of electrons at any point is

described by the local Maxwell±Boltzmann distribution law.

The local kinetic energy and the local temperature char-

acterize this electron motion, and there is no current density in

a stable system due to electron movement in all directions. The

local internal temperature of an electron gas can be written as

(Ghosh et al., 1984)

t�r� � �2=3kB�gDFT�r�=��r�; �6�

where kB is the Boltzmann constant. The associated entropy

density is

s�r� � �3=2�kB��r�f�� ln�gDFT�r�=gTF�r��g; �7�
where gTF(r) is the Thomas±Fermi kinetic energy density and

� � 5=3� ln�4�cTF=3�; cTF � �3=10��3�2�2=3:

The local temperature is different from the external

temperature and the local entropy is different from the true

entropy: thermodynamic properties are zero for the electronic

ground state, whereas local functions t(r) � 0 and s(r) � 0 are

r-dependent. The temperature (6) locally measures the kinetic

electronic energy per particle at an external temperature

equal to 0 K. The local entropy (7) measures (up to a constant)

the deviation of the electron distribution from that of the

Thomas±Fermi model at point r (Nagy & Parr, 2000).
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Figure 1
Distributions of (a) the total electronic energy and (b) exchange energy as well as (c) the electron density and (d) Laplacian of the electron density in
crystalline �-oxalic acid dihydrate, C2H2O4�H2O. Line intervals are�(2, 4, 8)r � r10n atomic units (ÿ2� n� 2). In (a), (b) and (d) negative values are
solid; zero contours are dot-dashed; in (c) positive values are solid.



Some other functions widely used in solid-state and mol-

ecular physics and quantum chemistry may be also expressed

via �(r), r�(r) and r2�(r). First, we mention the gradient-

corrected exchange energy density, "x, which may be

expressed for the closed-shell systems as (Becke, 1988)

"x � ÿ��4=3�r� ÿ �1=2�1=3 bX2

1� 6bX sinhÿ1�X� ��r�
4=3: �8�

Here

� � 3
4

3

�

� �1=3

; b � 0:0042; X � 21=3 jr��r�j
��r�4=3

�9�

[spin density ��(r) was assigned the value of (1=2)�(r)]. This

function explicitly reveals regions of the potential-energy

lowering caused by exchange between electrons of the same

spin.

Another example is the one-electron potential (Hunter,

1975, 1986)

P�r� � r2��r�=4��r� ÿ jr��r�j2=8���r��2; �10�
which is an exact solution of a one-electron SchroÈ dinger

equation. The one-electron potential determines the potential

energy of (any) one electron in a many-electron system and

enters the effective potential in Kohn±Sham equations (Levy

et al., 1984). According to Hunter, the negative areas of P(r)

correspond to positive values of local one-electron kinetic

energy, meaning that an electron is classically allowed in these

areas. On the contrary, positive values of P(r) reveal potential

barriers where electrons exhibit quantum behavior. The

second term in (10) is always negative, whereas the ®rst term

has the same sign as r2�(r). Thus, classically allowed regions

of P(r) correspond to regions of negative Laplacian of the

electron density ± an empirical indicator of electron concen-

tration in Bader's (1990) theory of atomic interactions. It is

essential that the one-electron potential of any free atom

exhibits alternating negative minima and positive maxima

revealing the shell structure while the Laplacian of the elec-

tron density does not exhibit such behavior for outer electron

shells of some atoms beginning with the fourth row of the

Periodic Table (Sagar et al., 1988; Shi & Boyd, 1988; Kohout et

al., 1991; Kohout, 2001). The latter circumstance has an

important practical consequence. Lack of regions with

r2�(r) < 0 prevents the application of a standard topological

approach to study the chemical bond in compounds containing

heavy atoms. In this case, the one-electron potential can serve

as a useful descriptor of details of the atomic interactions.

Finally, we mention the local Fermi momentum

kF�r� � �3�2�1=3�1=3�r�; �11�
which characterizes the electron velocity associated with the

Fermi energy in the Thomas±Fermi homogeneous electron±

gas model. We can hardly treat kF as a measure of the electron

velocity in real crystals. However, as a consequence of the

local homogeneity principle (Kirzhnits et al., 1975), kF depends

on r and is a convenient tool to recover tiny bonding details in

the regions with near-uniform low (~0.1±0.3 e AÊ ÿ3) electron

density.

3. Results and discussion

We shall apply the approach outlined above to compounds

whose electron density was described by the Hansen &

Coppens (1978) multipole model. Multipole parameters used

in calculations were taken from the following sources:

Abramov & Okamura (1997) for diamond, Scherer (2004) for

�-oxalic acid dihydrate, Stash et al. (2004) for NaF and NaCl

and Stevens (1979) for Cl2. Multipole parameters for

YBa2Cu3O6.98 were obtained by Stash (2003) using experi-

mental structure factors from Lippmann et al. (2003). All the

results described in this work were obtained using program

WinXPRO2003 (Stash & Tsirelson, 2002). Wavefunctions by

Macchi & Coppens (2001) were used in the calculations.

3.1. Distributions of the electronic and exchange energies

A typical picture of the total electronic energy distribution

(1) is given in Fig. 1(a), where he(r) is plotted for crystalline

�-oxalic acid dihydrate, C2H2O4 �H2O. In the solid state, six

water molecules surround each molecule of acid and the

intermolecular hydrogen bonds exist along with intramol-

ecular covalent interactions. The energy density attains its

lowest negative values on the intra- and intermolecular bond

lines, revealing areas of concentration associated with bonding

interactions and lone pairs.2 Simultaneously, alternating

negative minima and positive maxima observed in the vicinity

of nuclei exhibit the shell structure of bonded O and C atoms.

The map of he(r) allows one to distinguish a shorter O(1)Ð

H(1)� � �O(3) hydrogen bond from a longer one, O(3)Ð

H(3)� � �O(2). Indeed, both hydrogen bonds are characterized

by different depth local minima he,min of ÿ0.0340 and

�0.0055 a.u., respectively. A similar behavior of he(r) in

crystalline urea has been reported elsewhere (Tsirelson,

2002a).

A map of the local exchange energy, "x, drawn in the same

plane (Fig. 1b) shows the contribution of the electron

exchange to the total electronic energy. Besides deep energy

wells in the vicinity of the nuclei, it also reveals the negative

exchange-energy-density bridges between bonded atoms

contributing to the potential-energy lowering during crystal

formation. Magnitudes of exchange contributions depend on

the nature of the bond, e.g. the shorter hydrogen bond in

C2H2O4 �H2O is characterized by a lower value of "x < 0 than

its longer counterpart (Fig. 1b). Function ÿ"x looks like the

electron density shown in Fig. 1(c): it implicitly contains all

typical bonding features such as valence-electron concentra-

tions and lone pairs, which become evident with the help of

the Laplacian of the electron density (Fig. 1d). However, there

is no need to analyze the Laplacian of ÿ"x: the Laplacian

electron density itself provides us with this information.
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exhibits the same features.



The closer the DFT local exchange energy approaches its

quantum-mechanical counterpart, the more accurate are the

electronic properties that result from a DFT calculation. We

believe that the analysis of the exchange-energy density

derived from experimental electron density in different

approximations may be used to improve existing DFT func-

tionals and therefore can open the way to a more accurate

prediction of electronic properties of matter.

3.2. Local temperature and local entropy

In the vicinity of the nuclei (r! Ri), the local temperature

t(r) approaches Z2
i =�3kB�, Zi is the nuclear charge. In isolated

atoms, t(r) exhibits a decreasing stepwise variation with r

showing characteristic values for the different atomic shells

(Nagy et al., 1996). In molecules and solids, the sphericity of

the distribution of t(r), typical in the free atom, is destroyed by

bonding interactions. Indeed, the local temperature of the

H2O molecule (in �-oxalic acid dihydrate) decreases along the

OÐH bonds and in the vicinity of electronic lone pairs of the

O atom (Fig. 2a). The difference map of the local temperature

referred to the promolecule, a superposition of undistorted

atoms calculated using wavefunctions by Macchi & Coppens

(2001), reveal this feature even better (Fig. 2b). Recalling that

t(r) is a local measure of the kinetic electronic energy per

particle, we conclude that charge accumulations in molecular

position space cause the electron velocity and, consequently,

the local temperature to decrease. Thus, the local temperature

reveals the accumulations of electronic charge commonly

associated with bonds and lone pairs.

Local entropy of the electron density, s(r), attains a

maximum at r ! Ri and decreases monotonically with

increasing r. It resembles the electron-density distribution

shown in Fig. 3(a) and does not explicitly exhibit any bonding

features. At the same time, the `difference' map of s(r)

referred to the promolecule reveals the latter features very

well (Fig. 3b).

Since an approximate model for the kinetic energy density

is known to fail for H atoms (Tsirelson, 2002a; Tsirelson &

Stash, 2002a), we carried out the `difference' local electron

temperature and entropy calculations for diamond (Fig. 4).

Again, the electron accumulations in the covalent bond cause

the local temperature to increase and the local entropy to

decrease compared to the promolecule. Thus, conclusions

drawn for the water molecule remain valid in spite of the

de®ciency in the H-atom description.

We note that `difference' maps for t(r) and s(r) exhibit the

double-humped pro®les, typical for the valence-electron

density of a CÐC bond in diamond, whereas the corre-

sponding deformation ED shows a single bonding peak.

Simultaneously, pro®les of the Laplacian of t(r) and s(r)

clearly reveal the CÐC bonding features (Fig. 5). Indeed, the

temperature ®eld (i.e. the kinetic electronic energy per

particle) of the electron gas is concentrated between the C

atoms with a slight depletion in the middle of the bond,

whereas near constant entropy reveals a local electron

concentration in that area.

3.3. Atomic contributions to electronic and exchange
energies

According to Bader (1990), the position space of a molecule

or crystal may be divided into atomic basins separated by

surfaces satisfying the zero-¯ux condition
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Figure 4
(a) The difference local electron temperature �t(r) = tprocryst(r) ÿ tcryst(r)
and (b) difference entropy �s(r) = sprocryst(r) ÿ scryst(r) along the CÐC
bond in diamond.

Figure 3
(a) Distribution of the local entropy in the water molecule (removed from
a crystalline �-oxalic acid dihydrate, C2H2O4�H2O) and (b) corresponding
difference map of the local entropy relative to the promolecule. Line
intervals are: (a) 0.5 s/kB and (b) 0.05 s/kB. Areas of relative temperature
decrease in (a) and areas of relative entropy increase in (b) are shown by
solid lines.

Figure 2
(a) Distribution of the local temperature in the water molecule (removed
from crystalline �-oxalic acid dihydrate, C2H2O4�H2O) and (b) corre-
sponding difference map of the local temperature relative to the
promolecule. Line intervals are: (a) 0.05 kBT and (b) 0.02 kBT. Areas
of relative temperature decrease in (b) are shown by solid lines.



r��r� � n�r� � 0; 8r 2 Si�r�: �12�
These basins are identi®ed with bonded atoms (pseudoatoms),

an integral of any property, A(r), over the volume of such an

atom, 
,

hAi � R



A�r� dV; �13�

yielding an average value of the property, whereas the sum of

atomic contributions thus obtained yields the value of the

property for a whole system. If this is applied to he(r) and "x,

Bader's approach may be used to obtain energies of functional

atomic groups, bonded molecules or elementary cells in a

crystal. Atomic components of electronic energy for H2O (in

�-oxalic acid dihydrate), NH3 and Cl2 molecules removed

from the crystal are given in Table 1. After summing, they

yield the electronic energy of a molecule. Note that integrated

energy values of he do not depend on the Laplacian term in

expression (4): the integral of r2�(r) over the atomic basins

was 0.0 � 10ÿ3 a.u.; the latter number is an error due to

integration. Quantum-chemically calculated values obtained

for free molecules (Table 1) indicate that our approach

provides a reasonable agreement between experimental and

theoretical energies, in spite of the slight distortions induced in

experimental electron densities from the parent crystal

environment. The largest discrepancy of 1.7% obtained for the

Cl2 molecule may be attributed to a relatively low accuracy of

the corresponding X-ray diffraction experiment. We note,

however, that, even in the case of perfect X-ray diffraction

data, energies of intermolecular interaction or cohesion

cannot be obtained in this way since their typical values are

comparable with experimental uncertainty.

The atomic integrated values of the exchange energy, Eexch,

temperature, T, and entropy, S, as well as corresponding

molecular values are also given in Table 1. Maximal Eexch

discrepancy of 2.5% is again observed for the Cl2 molecule,

although overall agreement between experimentally derived

and Hartree±Fock exchange energies is good. Listed values of

temperature and entropy in Table 1 may be considered as

predictions. Now we can only say that integrated T and S

values for N and O atoms are close to those given in the

literature for free atoms (Chattaraj et al., 1999).

3.4. One-electron potential

A map of the one-electron potential P(r) in the Cl2 mol-

ecule calculated from the experimental electron density using

(10) is shown in Fig. 6(a). A comparison with a theoretical

calculation of Chan & Hamilton (1998) (Fig. 6b) demonstrates

that the experimental P(r) reveals both electron concentra-

tions associated with lone pairs and charge depletion at the

centre of the ClÐCl bond reported earlier (Tsirelson et al.,

1995). Our calculations of the one-electron potentials for

�-oxalic acid dihydrate, urea and S4N4 con®rm that P(r)

visualizes charge concentrations and depletions in agreement
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Figure 6
Distributions of the one-electron potential in the Cl2 molecule (a)
calculated using the model electron density derived from the X-ray
diffraction experiment and (b) calculated by Chan & Hamilton (1998)
using DFT. Line intervals are �(2, 4, 8) � 10n atomic units, solid lines
correspond to the negative values of the one-electron potential indicated
by the charge concentrations.

Table 1
Atomic contributions to the electronic energy, he, exchange energy, Eexch,
local temperature, T, and local entropy, S, calculated from the model
electron densities.

The total molecular values are also listed and compared with the Hartree±
Fock values given in parentheses. All values are given in atomic units.

Atom or
molecule he Eexch kT S/k

H2O
O ÿ75.743 ÿ8.759 32.219 59.036
H ÿ0.298 ÿ0.162 2.868 2.907
H ÿ0.296 ÿ0.160 2.880 2.870
Total ÿ76.337 (ÿ76.171²) ÿ9.081 (ÿ8.946³)) 37.967 64.813

NH3

N ÿ55.300 ÿ7.129 33.604 54.366
H ÿ0.301 ÿ0.171 3.572 3.242
Total ÿ56.204 (ÿ56.326²) ÿ7.642 (ÿ7.670³) 44.320 64.092

Cl2
Cl ÿ451.517 ÿ26.887 47.857 108.215
Total ÿ903.034 (ÿ918.892) ÿ53.774 (ÿ55.094³) 95.714 216.430

² Iyengar et al. (2001). ³ Lee & Zhou (1991).

Figure 5
Distributions of the Laplacians of electron density (1), local temperature
(2), local Fermi momentum (3) and local entropy (4) along the CÐC
bond in diamond.



with conclusions drawn by Chan & Hamilton (1998, 1999) and

Levit & Safarti (1997) on the basis of DFT calculations.

We tested the ability of the one-electron potential to

analyze chemical bonding in a heavy-atom compound,

YBa2Cu3O6.98. Since the features of the of BaÐO interaction

in YBa2Cu3O6.98 cannot be resolved with the help of r2�, let

us consider the BaÐO(4) bonding interaction in the

OÐBaÐO plane of this crystal. Integration of the electron

density over zero-¯ux atomic basins yields atomic charges of

�1.48 (2) and ÿ0.86 (2) e for Ba and O, respectively. This is in

accordance with the general point of view that the Ba±O

interaction is of the closed-shell type; however, the details of

this interaction are not evident.

Kohout et al. (1991) pointed out that the Laplacian of ED

does not resolve the outermost P electronic shell of the Ba

atom. Moreover, this is true even for the penultimate O shell

of Ba because the corresponding extrema of r2�(r) are

positive. In contrast, the atomic one-electron potential of Ba

exhibits areas with P(r) < 0 corresponding to both O and P

shells. In a crystal, outermost electron concentrations of Ba

and O fall into a region of the interference of valence orbitals

of the two atoms (Fig. 7a), where electrons are classically

allowed. Here P(r) < 0 reveals an accumulation of electrons

resulting from the charge transfer from Ba to O. The BaÐO

bond critical point in the electron density is 1.511 AÊ from the

Ba atom: it falls within the area of P(r) > 0, corresponding

mainly to the outer region of the O shell of the Ba atom, which

is a manifestation of the ionic character of the bonded Ba

atom.

3.5. Fermi momentum

The local Fermi momentum can also be used to analyze the

details of an electron density distribution. Because the pattern

of the (3,ÿ1) critical points in the Fermi momentum distri-

bution coincides with that of the electron density, the Fermi

momentum gradient ®eld may help to identify bond critical

points in areas characterized by near-uniform low (0.1±

0.3 e AÊ ÿ3) values of �(r). For example, Tsirelson et al. (1998)

found that, in the case of the electron density reconstructed

with the � model, the principal ED curvature �2 approaches

zero at the critical points on the FÐF and ClÐCl interaction

lines in NaF and NaCl, respectively. Shallow ED surfaces

prevent the recognition with con®dence of the type of critical

bond on the anion±anion line. At the same time, topological

parameters of the local Fermi momentum, which are more

sensitive to r dependence, allows one to identify the latter as

bond critical points (Table 2).

We have also found that the Laplacian of kF reveals electron

concentrations and depletions in the same way as the La-

placians of the electron density, local electron temperature

and entropy (Fig. 5). The same conclusion may be drawn from

the analysis of the r2kF distribution along the BaÐO bond in

YBa2Cu3O6.98 (Fig. 7b), which is in agreement with the

consideration given above for the one-electron potential.

Thus, r2kF could also be used as another localization function.

In conclusion, a combination of the diffraction technique

with functionals of the density functional theory leads to the

uni®cation of the theoretical and experimental methods and
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Table 2
Topological parameters of the bond critical points in the electron density
and in the Fermi momentum for the anion±anion interactions in NaCl and
NaF.

NaCl NaF

�b.c.p. 0.030 (5) 0.027 (6)
�1 ÿ0.10 (3) ÿ0.12 (2)
�2 ÿ0.05 (2) ÿ0.01 (2)
�3 0.47 (2) 0.59 (2)
r2�b.c.p. 0.32 (2) 0.46 (2)
kF b.c.p. 0.51 0.491
�1(kF) ÿ0.57 ÿ0.72
�2kF) ÿ0.27 ÿ0.07
�3(kF) 2.68 3.56
r2kF b.c.p. 1.84 2.77

Figure 7
(a) Distributions of one-electron potential and (b) Laplacian of the local
Fermi momentum along BaÐO(4) in the OÐBaÐO plane of
YBa2Cu3O6.98: (1) one-electron potential or r2kF; (2) Laplacian of
electron density; (3) and (4) contributions of Ba and O atoms to the one-
electron potential or r2kF, respectively.



increases greatly the information derivable directly from

X-ray diffraction data. The joint application of functions

considered above to the bonding analysis looks very promising

since it allows one to describe both the static charge distri-

bution and picture the electron motion in terms of the local

energy and related functions.
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